
【国外标准】 Standard Practice for Evaluating the Kinetic Behavior of Ion Exchange Resins
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice is intended to evaluate changes in the performance of ion exchange resins used in mixed beds operating as polishing systems for solutions of low ionic strength, typically, <10 mg/L dissolved solids, that are intended to produce very high purity effluents. It is recommended that when new resins are installed in a plant it be used to provide a base line against which the future performance of that resin can be judged.5.2 The conditions of this test must be limiting kinetically, such that kinetic leakage, and not equilibrium leakage, is tested. This leakage is influenced by a combination of influent flow velocity and concentration, as well as bed depth.5.3 It is recommended that the practice be followed with the resin ratio, flow rate, and influent quality as indicated. The design of the apparatus permits other variations to be used that may be more appropriate to the chemicals used in a specific plant and the nature of its cooling water, but the cautions and limitations noted in the practice must be accommodated.5.4 It is possible that the cation resin could experience kinetics problems. In many cases, however, the anion resins are more likely to experience the types of degradation or fouling that could lead to impaired kinetics. Testing of field anion and cation resins together is an option, especially when historic data on the mixed bed will be compiled. Recognize, however, that many variables can be introduced, making it difficult to interpret results or to compare to historical or new resin data on separate components.5.5 Provision is made for calculation of the mass transfer coefficient in the Appendix X1. When such calculation is to be made, a full wet sieve analysis, as described in Test Methods D2187, also is required. Electronic particle sizing may be substituted if it is referenced back to the wet sieve method.5.6 This practice is intended to supplement, not displace, other indicators of resin performance, such as exchange capacity, percent regeneration, and service experience records.1.1 This practice is intended to evaluate changes in kinetic performance of ion exchange resins used in mixed beds to produce high purity water. Within strict limitations, it also may be used for comparing resin of different types. This standard does not seek to mimic actual operating conditions. Specific challenge solutions and conditions are specified. At the option of the user, other conditions may be tested.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6302-98(2017)
标准名称:
Standard Practice for Evaluating the Kinetic Behavior of Ion Exchange Resins
英文名称:
Standard Practice for Evaluating the Kinetic Behavior of Ion Exchange Resins标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather