- 您的位置:
- 快3网下载安装到手机 >>
- 全部标准分类 >>
- 国外标准 >>
- ASTM >>
- ASTM E458-08(2020) Standard Test Method for Heat of Ablation

【国外标准】 Standard Test Method for Heat of Ablation
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 General—The heat of ablation provides a measure of the ability of a material to serve as a heat protection element in a severe thermal environment. The parameter is a function of both the material and the environment to which it is subjected. It is therefore required that laboratory measurements of heat of ablation simulate the service environment as closely as possible. Some of the parameters affecting the heat of ablation are pressure, gas composition, heat transfer rate, mode of heat transfer, and gas enthalpy. As laboratory duplication of all parameters is usually difficult, the user of the data should consider the differences between the service and the test environments. Screening tests of various materials under simulated use conditions may be quite valuable even if all the service environmental parameters are not available. These tests are useful in material selection studies, materials development work, and many other areas. 4.2 Steady-State Conditions—The nature of the definition of heat of ablation requires steady-state conditions. Variances from steady-state may be required in certain circumstances; however, it must be realized that transient phenomena make the values obtained functions of the test duration and therefore make material comparisons difficult. 4.2.1 Temperature Requirements—In a steady-state condition, the temperature propagation into the material will move at the same velocity as the gas-ablation surface interface. A constant distance is maintained between the ablation surface and the isotherm representing the temperature front. Under steady-state ablation the mass loss and length change are linearly related. where: t = test time, s, ρo = virgin material density, kg/m3, δL = change in length or ablation depth, m, ρc = char density, kg/m3, and δc = char depth, m. This relationship may be used to verify the existence of steady-state ablation in the tests of charring ablators. 4.2.2 Exposure Time Requirements—The exposure time required to achieve steady-state may be determined experimentally by the use of multiple models by plotting the total mass loss as a function of the exposure time. The point at which the curve departs significantly from linearity is the minimum exposure time required for steady-state ablation to be established. Cases exist, however, in the area of very high heating rates and high shear where this type of test for steady-state may not be possible. 1.1 This test method covers determination of the heat of ablation of materials subjected to thermal environments requiring the use of ablation as an energy dissipation process. Three concepts of the parameter are described and defined: cold wall, effective, and thermochemical heat of ablation. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E458-08(2020)
标准名称:
Standard Test Method for Heat of Ablation
英文名称:
Standard Test Method for Heat of Ablation标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process