
【国外标准】 Standard Practice for Identifying Elements by the Peaks in Auger Electron Spectroscopy (Withdrawn 2017)
本网站 发布时间:
2024-02-28
- ASTM E827-08
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
Auger analysis is used to determine the elemental composition of the first several atomic layers, typically 1 to 5 nm thick, of a specimen surface. In conjunction with inert gas ion sputtering, it is used to determine the sputter depth profile to a depth of a few micrometres.The specimen is normally a solid conductor, semiconductor, or insulator. For insulators, provisions may be required for control of charge accumulation at the surface (see Guide E 1523). Typical applications include the analysis of surface contaminants, thin film deposits or segregated overlayers on metallic or alloy substrates. The specimen topography may vary from a smooth, polished specimen to a rough fracture surface.Auger analysis of specimens with volatile species that evaporate in the ultra-high vacuum environment of the Auger chamber and substances which are susceptible to electron or X-ray beam damage, such as organic compounds, may require special techniques not covered herein. (See Guide E 983.)1.1 This practice outlines the necessary steps for the identification of elements in a given Auger spectrum obtained using conventional electron spectrometers. Spectra displayed as either the electron energy distribution (direct spectrum) or the first derivative of the electron energy distribution are considered.1.2 This practice applies to Auger spectra generated by electron or X-ray bombardment of the specimen surface and can be extended to spectra generated by other methods such as ion bombardment.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM E827-08
标准名称:
Standard Practice for Identifying Elements by the Peaks in Auger Electron Spectroscopy (Withdrawn 2017)
英文名称:
Standard Practice for Identifying Elements by the Peaks in Auger Electron Spectroscopy (Withdrawn 2017)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium
- ASTM A1021/A1021M-20 Standard Specification for Martensitic Stainless Steel Forgings and Forging Stock for High-Temperature Service