
【国外标准】 Standard Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (Performance-Based Method)
本网站 发布时间:
2024-02-28

适用范围:
5.1 This test method for the chemical analysis of titanium alloys is primarily intended to test material for compliance to compositional requirements of specifications such as those under jurisdiction of ASTM Committee B10. It may also be used to test compliance with other specifications that are compatible with the test method.5.2 This is a performance-based test method that relies more on the demonstrated quality of the test result than on strict adherence to specific procedural steps. It is assumed that all who use this test method will be trained analysts capable of performing common laboratory procedures skillfully and safely, and that the work will be performed in a properly equipped laboratory.5.3 It is expected that laboratories using this test method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory, the specific reference materials employed, and performance acceptance criteria.1.1 This test method describes the analysis of titanium and its alloys by spark atomic emission spectrometry (Spark-AES) and glow discharge atomic emission spectrometry (GD-AES). The titanium specimen to be analyzed may be in the form of a disk, casting, foil, sheet, plate, extrusion, or some other wrought form or shape. The elements and ranges covered in the scope by spark-AES of this test method are listed below.Element Tested Mass Fraction Range (%)Aluminum 0.008 to 7.0Chromium 0.006 to 0.1Copper 0.014 to 0.1Iron 0.043 to 0.3Manganese 0.005 to 0.1Molybdenum 0.014 to 0.1Nickel 0.006 to 0.1Silicon 0.018 to 0.1Tin 0.02 to 0.1Vanadium 0.015 to 5.0Zirconium 0.013 to 0.11.1.1 The elements oxygen, nitrogen, carbon, niobium, boron, yttrium, palladium, and ruthenium, were included in the ILS but the data did not contain the required six laboratories. Precision tables were provided for informational use only.1.2 The elements and ranges covered in the scope by GD-AES of this test method are listed below.Element Tested Mass Fraction Range (%)Aluminum 0.02 to 7.0Carbon 0.02 to 0.1Chromium 0.006 to 0.1Copper 0.028 to 0.1Iron 0.09 to 0.3Molybdenum 0.016 to 0.1Nickel 0.006 to 0.1Silicon 0.018 to 0.1Tin 0.022 to 0.1Vanadium 0.054 to 5.0Zirconium 0.026 to 0.11.2.1 The elements boron, manganese, oxygen, nitrogen, niobium, yttrium, palladium, and ruthenium were included in the ILS, but the data did not contain the required six laboratories. Precision tables were provided for informational use only.1.3 The elements and mass fractions given in the above scope tables are the ranges validated through the interlaboratory study. However, it is known that the techniques used in this standard allow the useable range, for the elements listed, to be extended higher or lower based on individual instrument capability, available reference materials, laboratory capabilities, and the spectral characteristics of the specific element wavelength being used. It is also acceptable to analyze elements not listed in 1.1 or 1.2 and still meet compliance to this standard test method. Laboratories must provide sufficient evidence of method validation when extending the analytical range or when analyzing elements not reported in Section 18 (Precision and Bias), as described in Guide E2857.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E2994-21
标准名称:
Standard Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (Performance-Based Method)
英文名称:
Standard Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (Performance-Based Method)标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS 1038.21.1.2-2002 (R2013) Coal and coke - Analysis and testing Higher rank coal and coke - Relative density - Analysis sample/volumetric method
- AS 1038.21.2-1992 Coal and coke - Analysis and testing Higher rank coal and coke - Relative density - Lump sample
- AS 1807.21-1989 Cleanrooms, workstations and safety cabinets - Methods of test Determination of inward air velocity of Class I biological safety cabinets
- AS 2005.21.1-1990 Low voltage fuses - Fuses with enclosed fuse-links Supplementary requirements for fuses for use by authorized persons (Fuses mainly for industrial application) - Standardized fuse systems - Fuses with fuse-links with blade contacts
- AS 2005.21.2-1990 Low voltage fuses - Fuses with enclosed fuse-links Supplementary requirements for fuses for use by authorized persons (Fuses mainly for industrial application) - Standardized fuse systems - Fuses with fuse-links for bolted connections
- ASTM F2783-20 Standard Practice for Design, Manufacture, Operation, Maintenance, and Inspection of Amusement Rides and Devices, in Canada
- ASTM F2787-13(2018) Standard Practice for Structural Design of Thermoplastic Corrugated Wall Stormwater Collection Chambers
- ASTM F2789-10(2020) Standard Guide for Mechanical and Functional Characterization of Nucleus Devices
- ASTM F2790-10(2019)e1 Standard Practice for Static and Dynamic Characterization of Motion Preserving Lumbar Total Facet Prostheses
- ASTM F2791-24 Standard Guide for Assessment of Surface Texture of Non-Porous Biomaterials in Two Dimensions
- ASTM F2793-14(2023) Standard Specification for Bicycle Grips
- ASTM F2795-18 Standard Test Method for Performance of Self-Contained Soft Serve and Shake Freezers
- ASTM F2797-19 Standard Test Method for Evaluating Edge Cleaning Effectiveness of Vacuum Cleaners
- ASTM F2798-09(2023) Standard Specification for Sealless Lube Oil Pump with Oil Through Motor for Marine Applications
- ASTM F2799-14(2019) Standard Practice for Maintenance of Aircraft Electrical Wiring Systems