
【国外标准】 Standard Test Method for Field Measurement of Sound Power Level by the Two-Surface Method
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 The function and operation of equipment in the field often preclude the measurement of the free-field sound pressure levels of a single piece of equipment in the absence of interfering sound from other equipment operating at the same time. The two-surface method will provide, in most cases, a reliable estimate of the normal sound power levels of a specimen operating in an adverse environment.5.2 This test method is intended for use in the field in the presence of what is normally regarded as interfering background noise. This test method is based upon the work of Hubner 5,6 and Diehl,7 but differs from all other current sound power measurement procedures by requiring simultaneous measurement at both conformal surfaces and by resolving time-averaged sound pressure levels at both surfaces to within 0.1 dB. These two features, simultaneous recording and 0.1dB resolution, enable source sound power to be calculated when the direct sound field of the source is actually lower in level than the ambient noise.5.3 The use of this test method is expected to be primarily for the relative assessment of the sound power from similar sources or for the prediction of sound levels in a plant based upon measurements of similar sources in another plant. This test method is believed to be capable of yielding a reasonably good estimate of absolute power level with proper care of application and full conformance to the provisions of this procedure.5.4 The two-surface method is applicable only when the two measurement surfaces can be physically selected to produce positive values of the difference in average sound pressure level. That is, the inner surface sound pressure level minus the outer surface sound pressure level must be at least +0.1 dB. This limitation applies to each frequency band and each constituent surface area investigated. Only the frequency band in which a zero or negative difference occurs is it considered invalid and usually adjacent bands will be valid. In practice, only rarely will all three one-third octave bands of a given octave yield invalid data at all constituent areas. Therefore, less than complete results are permissible when one-third octave analysis is used and full octave results are reported.5.5 The two-surface method may not produce results when testing some very large machines in very reverberant rooms or in rooms having a volume less than about 20 times the space enclosed by an envelope around the larger dimensions of the machine. In such cases, the sound pressure level close to the machine may not decrease in any regular way with increasing distance from a machine surface, making it impossible to select two measurement surfaces producing positive differences of sound pressure level.1.1 This test method covers the field, or in situ measurement of sound power level by the two-surface method. The test method is designed to minimize the effects of reverberant conditions, directivity of the noise source under consideration, and the effects of ambient noise from other nearby equipment operating at the same time.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM E1124-10(2016)
标准名称:
Standard Test Method for Field Measurement of Sound Power Level by the Two-Surface Method
英文名称:
Standard Test Method for Field Measurement of Sound Power Level by the Two-Surface Method标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM E1123-86(2023) Standard Practices for Mounting Test Specimens for Sound Transmission Loss Testing of Naval and Marine Ship Bulkhead Treatment Materials
- 下一篇: ASTM E1125-16(2020) Standard Test Method for Calibration of Primary Non-Concentrator Terrestrial Photovoltaic Reference Cells Using a Tabular Spectrum
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices