
【国外标准】 Standard Test Method for Tensile Creep Rupture of Fiber Reinforced Polymer Matrix Composite Bars
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This method for investigating creep rupture of FRP bars is intended for use in laboratory tests in which the principal variable is the size or type of FRP bars, magnitude of applied force, and duration of force application. Unlike steel reinforcing bars or prestressing tendons subjected to significant sustained stress, creep rupture of FRP bars may take place below the static tensile strength. Therefore, the creep rupture strength is an important factor when determining acceptable stress levels in FRP bars used as reinforcement or tendons in concrete members designed to resist sustained loads. Creep rupture strength varies according to the type of FRP bars used.5.2 This test method measures the creep rupture time of FRP bars under a given set of controlled environmental conditions and force ratios.5.3 This test method is intended to determine the creep rupture data for material specifications, research and development, quality assurance, and structural design and analysis. The primary test result is the million-hour creep rupture capacity of the specimen.5.4 Creep properties of reinforced, post-tensioned, or prestressed concrete structures are important to be considered in design. For FRP bars used as reinforcing bars or tendons, the creep rupture shall be measured according to the method given herein.1.1 This test method outlines requirements for tensile creep rupture testing of fiber reinforced polymer matrix (FRP) composite bars commonly used as tensile elements in reinforced, prestressed, or post-tensioned concrete.1.2 Data obtained from this test method are used in design of FRP reinforcements under sustained loading. The procedure for calculating the one-million hour creep-rupture capacity is provided in Annex A1.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. Within the text, the inch-pound units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7337/D7337M-12(2019)
标准名称:
Standard Test Method for Tensile Creep Rupture of Fiber Reinforced Polymer Matrix Composite Bars
英文名称:
Standard Test Method for Tensile Creep Rupture of Fiber Reinforced Polymer Matrix Composite Bars标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather