
【国外标准】 Standard Test Method for Rock Bolt Anchor Pull Test (Withdrawn 2022)
本网站 发布时间:
2024-02-28
- ASTM D4435-13e1
- Withdrawn, No replacement
- 定价: 0元 / 折扣价: 0 元
- 在线阅读
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Rock bolts are used for support in a variety of mining and civil engineering situations.3 The pull test may be used to provide a quantitative measure of the relative performance of different anchor systems in the same rock type. Anchor systems may be different mechanical anchors or different bond materials or lengths for grouted anchors. Such data can be used to choose an anchor type and determine bolt length, spacing, and size.5.2 The objective of the method is to measure anchor performance, and not the performance of the rock bolt itself. Thus, to make sure the bolt response during the test is minimal and predictable, high strength, short-length (6 to 8 ft (1.8 to 2.5 m)) bolts have been specified. The bolt should be just long enough to make sure that failure occurs in the anchor system and not from the reaction pad bearing down on the rock mass.5.3 Ideally, the rock bolt anchor should fail by shear at the anchor-rock interface or bond. Therefore, the local characteristics of the rock, such as roughness and induced fractures, are significant factors in the anchor strength. To obtain realistic strength values, the test holes should be drilled using the same methods as the construction rock bolt holes.5.4 Rocks with significant time-dependent behavior, such as rock salt or shale, may respond to the anchor system itself and change the anchor strength. In these cases, consideration should be given to testing bolts over a period of time.5.5 In establishing a testing program, the following factors should be considered:5.5.1 Anchor pull tests should be conducted in all rock types in which construction bolts will be installed. If the rock is anisotropic, for example, bedded or schistose, the tests should be conducted in various orientations relative to the anisotropy, including those at which the construction bolt may be installed.5.5.2 In each rock type, at each orientation, and for each anchor system, a sufficient number of tests should be conducted to determine the average bolt capacities within a fixed uncertainty at the 95 % confidence level. The allowable uncertainty band depends on the project and involves such factors as the rock quality, expected project lifetime, and importance of the areas to be bolted. Its determination will require considerable engineering judgment. As a rough guideline, at least 10 to 12 pull tests for a single set of variables have been found necessary to satisfy the statistical requirements.Note 1—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 The objective of this test method is to measure the working and ultimate capacities of a rock bolt anchor. This method does not measure the entire roof support system. This method also does not include tests for pretensioned bolts or mine roof support system evaluation.1.2 This test method is applicable to mechanical, cement grout, resin, (epoxy, polyester, and the like), or other similar anchor systems.1.3 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Reporting of test results in units other than inch-pound shall not be regarded as nonconformance with this test method.1.3.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
标准号:
ASTM D4435-13e1
标准名称:
Standard Test Method for Rock Bolt Anchor Pull Test (Withdrawn 2022)
英文名称:
Standard Test Method for Rock Bolt Anchor Pull Test (Withdrawn 2022)标准状态:
Withdrawn, No replacement-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ANSI X9.104-1-2004 (R2023) Financial transaction card originated messages - Card acceptor to acquiring host messages - Part 1: Messages, data elements and code values
- ANSI X9.104-1:2004 (R2017) Financial transaction card originated messages - Card acceptor to acquiring host messages - Part 1: Messages, data elements and code values
- ANSI X9.105-1:2009 (R2019) (Identical to ISO 8583-1:2009) Financial transaction card originated messages - Interchange message specifications -Part 1: Messages, data elements and code values
- ANSI X9.134-1-2020 Core Banking: Mobile Financial Services - General Framework
- ANSI X9.141-1-2021 Financial and Personal Data Protection and Breach Notification Standard - Part 1: Data Protection
- ANSI X9.24-1-2017 Corrigendum Corrigendum to ANSI X9.24-1-2017 - Retail Financial Services Symmetric Key Management Part 1: Using Symmetric Techniques
- ANSI X9.8-1-2019/ISO 9564-1-2017 Financial services - Personal Identification Number (PIN) management and security - Part 1: Basic principles and requirements for PINs in card-based systems (Identical Adoption)
- ANSI X9.82-1-2006 (R2013) Random Number Generation Part 1: Overview and Basic Principles
- ANSI X9.92-1-2009 (R2017) Public Key Cryptography for the Financial Services Industry - Digital Signature Algorithms Giving Partial Message Recovery - Part 1: Elliptic Curve Pintsov-Vanstone Signatures (ECPVS)
- ANSI/INCITS/ISO/IEC TR 11581-1:2011[2015] Information technology - User interface icons - Part 1: Introduction to and overview of icon standards
- ANSI/INCITS/ISO/IEC TR 19075-1:2011[2015] Information technology - Database languages - SQL Technical Reports - Part 1: XQuery Regular Expression Support in SQL
- AS 1012.10-1985/Amdt 1-1987 Methods of testing concrete - Method for the determination of indirect tensile strength of concrete cylinders ('Brazil' or splitting test)
- AS 1012.8-1986/Amdt 1-1989 Methods of testing concrete - Method for making and curing concrete compression, indirect tensile and flexure test specimens, in the laboratory or in the field
- AS 1026-1992/Amdt 1-1993 Electric cables - Impregnated paper insulated - Working voltages up to and including 33 kV
- AS 1038.12.1-1993/Amdt 1-1993 Coal and coke - Analysis and testing - Higher rank coal - Caking and coking properties - Crucible swelling number