
【国外标准】 Standard Test Method for Rubber Property—International Hardness
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The International Hardness test is based on measurement of the penetration of a rigid ball into the rubber specimen under specified conditions. The measured penetration is converted into IRHD, the scale of degrees being so chosen that 0 represents a material having an elastic modulus of zero, and 100 represents a material of infinite elastic modulus. 4.1.1 The scale also fulfills the following conditions over most of the normal range of hardness: one IRHD range represents approximately the same proportionate difference in Young's modulus, and for rubber vulcanizates in the usual range of resilience, readings in IRHD are comparable with those given by a Type A durometer (Test Method D2240) when testing standard specimens. 4.1.1.1 The term “usual range of resilience” is used to exclude those compounds that have unusually high rates of stress relaxation or deformational hysteresis. For such compounds, differences in the dwell time in the two hardness tests (Test Methods D2240 and D1415) result in differences in hardness values. Readings may not be comparable when testing curved or irregularly shaped test specimens. 4.1.2 For substantially elastic isotropic materials like well-vulcanized natural rubbers, the hardness in IRHD bears a known relation to Young's modulus, although for markedly plastic or anisotropic rubbers the relationship will be less precisely known. 4.1.3 The relation between the difference of penetration and the hardness expressed in IRHD is based on the following: 4.1.3.1 The relation4 between penetration and Young's modulus for a perfectly elastic isotropic material: where: D = known relationship for a perfectly elastic isotropic material, between indentation, R = radium of the ball, mm, F = total indenting force, E = Young's modulus expressed in megapascals, and f = contact force 4.1.3.2 Use of a probit (integrated normal error) curve to relate log10 M and hardness in IRHD, as shown in Fig. 1. This curve is defined as follows: FIG. 1 Point Curve to Relate Log10 M and the Hardness in IRHD 4.1.3.3 The value of log10 M corresponding to the midpoint of the curve is equal to 0.364, that is, M = 2.31 MPa or 335 psi. 4.1.3.4 The maximum slope is equal to 57 IRHD per unit increase in log10 M. 1.1 This test method covers a procedure for measuring the hardness of vulcanized or thermoplastic rubber. The hardness is obtained by the difference in penetration depth of a specified dimension ball under two conditions of contact with the rubber: (1) with a small initial force and (2) with a much larger final force. The differential penetration is taken at a specified time and converted to a hardness scale value. 1.2 This test method is technically similar to ISO 48. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D1415-18
标准名称:
Standard Test Method for Rubber Property—International Hardness
英文名称:
Standard Test Method for Rubber Property—International Hardness标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process