
【国外标准】 Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solutions
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This test method applies to one-dimensional, laminar flow of aqueous solutions, such as chemical solutions, landfill leachate, and contaminated water (from here on referred to as “test liquid”), through saturated/hydrated GCL specimen that is consolidated and permeated under a prescribed or requested set of conditions.4.2 This test method assumes that Darcy’s law is valid and that the hydraulic conductivity is essentially unaffected by hydraulic gradient. The validity of Darcy’s law may be evaluated by measuring the hydraulic conductivity of the specimen at three different hydraulic gradients; if all measured values are similar (within about 25 %), then Darcy's law may be taken as valid. However, when the hydraulic gradient acting on a test specimen is changed, the state of stress will also change and, if the specimen is compressible, the volume of the specimen will change. Thus, some change in hydraulic conductivity may occur when the hydraulic gradient is altered, even in cases where Darcy's law is valid.4.3 This test method provides tools for determining flux and hydraulic conductivity values for a given GCL under the following two different scenarios, which should be specified by the requester:4.3.1 Scenario 1 – Hydrated/Saturated with Water Prior to Contact with Test Liquid—This scenario simulates the field conditions where the GCL is well hydrated with water prior to contact with actual test liquid. It should be noted that initial degree of saturation/hydration greatly affects the hydraulic properties of a GCL product. The test has two phases: (Phase 1) hydrate, saturate, consolidate, and permeate with water as Test Liquid 1, and (Phase 2) switch to permeation with test liquid as Test Liquid 2.4.3.2 Scenario 2 – Hydrated/Saturated with Test Liquid (Worst Case)—This scenario simulates the field conditions where the GCL is in contact with test liquid prior to being fully hydrated with water. It should be noted that this scenario may result in higher flux and hydraulic conductivity values compared to Scenario 1, as chemicals present in test liquid may alter the hydration and hydraulic properties of a GCL product.4.4 The apparatus used in this test method is commonly used to determine the hydraulic conductivity of soil specimens. However, flux values measured in this test are typically much lower than those commonly measured for most natural soils. It is essential that the leakage rate of the apparatus in this test be less than 10 % of the flux.1.1 This test method covers laboratory measurement of both flux and hydraulic conductivity (also referred to as coefficient of permeability) of geosynthetic clay liner (GCL) specimens permeated with chemical solutions and leachates utilizing a flexible wall permeameter. For test measurement of index hydraulic properties of geosynthetic clay liners, refer to Test Method D5887/D5887M. For hydraulic conductivity compatibility of soils with aqueous chemical solutions and leachates, refer to Test Method D7100.1.2 This test method may be utilized with GCL specimens that have a hydraulic conductivity less than or equal to 1 × 10–5 m/s (1 × 10–3 cm/s).1.3 This test method is applicable to GCL products having geotextile backing(s). It is not applicable to GCL products with geomembrane backing(s), geofilm backing(s), or polymer coating backing(s).1.4 This test method allows the requester to evaluate the hydraulic properties of a GCL with site-specific or laboratory-prepared solution under different test conditions; thus, the test method also may be used to check performance or conformance, or both.1.5 The values stated in SI units are to be regarded as the standard, unless other units are specifically given. By tradition in U.S. practice, hydraulic conductivity is reported in centimeters per second, although the common SI units for hydraulic conductivity are meters per second.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6766-20a
标准名称:
Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solutions
英文名称:
Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Aqueous Solutions标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F2947/F2947M-21a Standard Specification for 150 to 1500 mm [6 to 60 in.] Annular Corrugated Profile-Wall Polyethylene (PE) Pipe and Fittings for Sanitary Sewer Applications
- ASTM F2948-21 Standard Guide to Walkway Auditor Qualifications
- ASTM F2949-18 Standard Specification for Pole Vault Box Collars
- ASTM F2950-14(2021) Standard Safety and Performance Specification for Soccer Goals
- ASTM F2951-19 Standard Consumer Safety Specification for Baby Monitors
- ASTM F2952-22 Standard Guide for Determining the Mean Darcy Permeability Coefficient for a Porous Tissue Scaffold
- ASTM F2956-22 Standard Test Methods for Anchor Systems Used for Detention Hollow Metal Systems
- ASTM F2958-14(2019) Standard Guide for Helicopter Inland Search and Rescue (SAR) Technician
- ASTM F2970-22 Standard Practice for Design, Manufacture, Installation, Operation, Maintenance, Inspection and Major Modification of Trampoline Courts
- ASTM F2974-22 Standard Practice for Auditing Amusement Rides and Devices
- ASTM F2975-12(2022) Standard Test Method for Measuring the Field Performance of Commercial Kitchen Ventilation Systems
- ASTM F2977-20 Standard Test Method for Small Punch Testing of Polymeric Biomaterials Used in Surgical Implants
- ASTM F2981-15(2020) Standard Test Method for Verifying Nonporous Flexible Barrier Material Resistance to the Passage of Air
- ASTM F2983-13(2018) Standard Guide for Manufacturers for Labeling and Care Instructions for Wrestling Mats
- ASTM F2986-23 Standard Specification for Corrugated Polyethylene Pipe and Fittings for Mine Leachate, Heap Leach Aeration and Other Mining Applications