
【国外标准】 Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method provides rapid and precise measurement of total sulfur in petroleum and petroleum products with a minimum of sample preparation. A typical analysis time is 1 min to 5 min per sample.5.2 The quality of many petroleum products is related to the amount of sulfur present. Knowledge of sulfur concentration is necessary for processing purposes. There are also regulations promulgated in federal, state, and local agencies that restrict the amount of sulfur present in some fuels.5.3 This test method provides a means of determining whether the sulfur content of petroleum or a petroleum product meets specification or regulatory limits.5.4 When this test method is applied to petroleum materials with matrices significantly different from the calibration materials specified in 10.1, the cautions and recommendations in Section 6 should be observed when interpreting results.1.1 This test method covers the determination of total sulfur in petroleum and petroleum products that are single-phase and either liquid at ambient conditions, liquefiable with moderate heat, or soluble in hydrocarbon solvents. These materials can include diesel fuel, jet fuel, kerosine, other distillate oil, naphtha, residual oil, lubricating base oil, hydraulic oil, crude oil, unleaded gasoline, gasoline-ethanol blends, biodiesel (see Note 2), and similar petroleum products.NOTE 1: Oxygenated fuels with ethanol or methanol contents exceeding the limits given in Table 1 can be dealt with using this test method, but the precision and bias statements do not apply (see Appendix X3).NOTE 2: For samples with high oxygen contents (>3 % by weight) sample dilution as described in 1.3 or matrix matching must be performed to assure accurate results.1.2 Interlaboratory studies on precision revealed the scope to be 17 mg/kg to 4.6 % by mass. An estimate of this test method’s pooled limit of quantitation (PLOQ) is 16.0 mg/kg as calculated by the procedures in Practice D6259. However, because instrumentation covered by this test method can vary in sensitivity, the applicability of the test method at sulfur concentrations below approximately 20 mg/kg must be determined on an individual basis. An estimate of the limit of detection is three times the reproducibility standard deviation, and an estimate of the limit of quantitation2 is ten times the reproducibility standard deviation.1.3 Samples containing more than 4.6 % by mass sulfur can be diluted to bring the sulfur concentration of the diluted material within the scope of this test method. Samples that are diluted can have higher errors than indicated in Section 17 than non-diluted samples.1.4 Volatile samples (such as high vapor pressure gasolines or light hydrocarbons) may not meet the stated precision because of selective loss of light materials during the analysis.1.5 A fundamental assumption in this test method is that the standard and sample matrices are well matched, or that the matrix differences are accounted for (see 6.2). Matrix mismatch can be caused by C/H ratio differences between samples and standards (see Section 6) or by the presence of other heteroatoms.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D4294-21
标准名称:
Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry
英文名称:
Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1635.21.1:1995 Methods of test for pressure-sensitive adhesive tape - Mending stability
- AS/NZS 3200.2.21:1994 Approval and test specification - Medical electrical equipment Particular requirements for safety - Infant radiant warmers
- AS/NZS 3200.2.21:1994/Amdt 1:1998 Approval and test specification - Medical electrical equipment - Particular requirements for safety - Infant radiant warmers
- AS/NZS 3350.2.21:1999/Amdt 1:2001 Safety of household and similar electrical appliances - Particular requirements - Storage water heaters
- AS/NZS 3350.2.21:1999/Amdt 3:2004 Safety of household and similar electrical appliances Particular requirements - Storage Water Heaters
- AS/NZS 3350.2.21:1999/Amdt 5:2007 Safety of household and similar electrical appliances Particular requirements - Storage water heaters (IEC 60335-2-21:1997, MOD)
- AS/NZS 3750.21:2008 Paints for steel structures Undercoat - Solvent-borne
- AS/NZS 60335.2.21:2002/Amdt 2:2005 Household and similar electrical appliances - Safety - Particular requirements for storage water heaters
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members