
【国外标准】 Standard Practice for Rubber Deterioration Using Artificial Weathering Apparatus
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 This practice describes procedures to use in determining the effects of an open-flame carbon-arc light source, an enclosed carbon-arc light source, a xenon-arc light source, or a fluorescent UV source along with heat and moisture on rubber specimens held in a jig or holder with or without a specified strain. The purpose is to attempt to accelerate the effects produced by light, heat, and moisture in the natural environment. Exposures are not intended to simulate the deterioration caused by localized weather phenomena, such as atmospheric pollution, biological attack, and saltwater exposure. The section in Practice G151 and the standard for the appropriate apparatus, that is, Practices G152, G153, G154, or G155 should be consulted for additional information on significance and use of the exposure tests.3.2 The primary criterion used in estimating resistance to weathering is the percentage decrease in tensile strength and in elongation at break. A supplementary criterion for estimating resistance to weathering is the observed extent of surface crazing and cracking.3.3 Results obtained by use of these test procedures should not be represented as equivalent to those of any natural exposure test until the degree of quantitative correlation has been established for the material in question.3.4 Because of differences in the spectral power distributions of the exposure sources as well as the other conditions in the different types of laboratory weathering tests, the different procedures may not result in the same performance rankings or types of failure modes of the materials. Comparisons shall not be made of relative stabilities of materials exposed in different types of apparatus.3.5 When conducting exposures in devices that use laboratory light sources, it is important to consider how well the artificial weathering conditions will reproduce property changes and failure modes caused by end-use environments on the materials being tested.3.6 Practices G151, G152, G153, G154, and G155 recommend that a similar material of known performance (a control) be exposed simultaneously with the test specimen to provide a standard for comparative purposes. Preferably, a control material known to have poor durability as well as one that has good durability should be used. The reason for using a control is that reproducibility in ranking stabilities is usually better than reproducibility of absolute changes. Therefore, the use of controls is particularly important when test materials are not being compared with one another.1.1 This practice covers specific variations in the test conditions and procedures that shall be applicable when Practice G151 plus either Practice G152, G153, G154, or G155 are employed for exposure of vulcanized rubber compounds. It also covers the preparation of test specimens and the evaluation of results.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D750-12(2021)
标准名称:
Standard Practice for Rubber Deterioration Using Artificial Weathering Apparatus
英文名称:
Standard Practice for Rubber Deterioration Using Artificial Weathering Apparatus标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D7379/D7379M-08(2021) Standard Test Methods for Strength of Modified Bitumen Sheet Material Laps Using Cold Process Adhesive
- ASTM D7381-07(2021)e1 Standard Practice for Establishing Allowable Stresses for Round Timbers for Piles from Tests of Full-Size Material
- ASTM D7382-20 Standard Test Methods for Determination of Maximum Dry Unit Weight of Granular Soils Using a Vibrating Hammer
- ASTM D7385-21 Standard Guide for Estimating Carbon Saturation by Temperature Rise Upon Immersion
- ASTM D7387-20 Standard Test Method for Vibration Testing of Intermediate Bulk Containers (IBCs) Used for Shipping Liquid Hazardous Materials (Dangerous Goods)
- ASTM D7390-18e1 Standard Guide for Evaluating Asbestos in Dust on Surfaces by Comparison Between Two Environments
- ASTM D7391-20 Standard Test Method for Categorization and Quantification of Airborne Fungal Structures in an Inertial Impaction Sample by Optical Microscopy
- ASTM D7392-20 Standard Practice for PM Detector and Bag Leak Detector Manufacturers to Certify Conformance with Design and Performance Specifications for Cement Plants
- ASTM D7395-18(2023) Standard Test Method for Cone/Plate Viscosity at a 500 s-1 Shear Rate
- ASTM D7396-14(2020) Standard Guide for Preparation of New, Continuous Zinc-Coated (Galvanized) Steel Surfaces for Painting
- ASTM D7398-23 Standard Test Method for Boiling Range Distribution of Fatty Acid Methyl Esters (FAME) in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- ASTM D7399-18 Standard Test Method for Determination of the Amount of Polypropylene in Polypropylene/Low Density Polyethylene Mixtures Using Infrared Spectrophotometry
- ASTM D7400/D7400M-19 Standard Test Methods for Downhole Seismic Testing
- ASTM D7402-09(2017) Standard Practice for Identifying Cationic Emulsified Asphalts
- ASTM D7403-19 Standard Test Method for Determination of Residue of Emulsified Asphalt by Low Temperature Vacuum Distillation