
【国外标准】 Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 This test method indicates the ability of a refractory product to withstand the stress generated by sudden changes in temperature.3.2 Because the recommended furnace temperature of this cycling test is 1200 °C (2190 °F), this test method may not indicate the ability of a refractory product to withstand cycling at higher or lower temperatures, especially if the existing morphology of the refractory product changes.3.3 This test method is useful for research and development, as well as for comparing refractory products. The precision should be considered when using this test for specification purposes.3.4 Ruggedness tests found the following variables to be rugged:Temperature +5 °CHot spacing 1/2 to 3/4 in. (12.77 to 19 mm)Cold spacing 1/2 to 3/4 in. (12.77 to 19 mm)Center versus end gripping of the barsHot hold time 10 to 15 minCold hold time 10 to 15 minOperator air speed 0 to 2 mi/h (0 to 3.2 km/h)Initially cold or heated samplesLast in, first out (LIFO); or first in, first out (FIFO) removal from the furnaceSawed or original surface as tensile face during MOR testingBar thickness 0.96 to 1.04 in. (24.5 to 26.4 mm)1.1 This test method is used for determining the strength loss or reduction in continuity, or both, of prism-shaped specimens which are cut from refractory brick or shapes and subjected to thermal cycling.1.2 The strength loss is measured by the difference in modulus of rupture (MOR) between uncycled specimens and the specimens subjected to thermal cycling.1.3 The reduction in structural continuity is estimated by the difference in sonic velocity before and after thermal cycling.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1171-16(2022)
标准名称:
Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories
英文名称:
Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices