
【国外标准】 Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Source water protection calls for a rapid and reliable optical method to identify and quantify the oil spill contamination, such as water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group.5.2 This test method identifies the presence of contamination and quantifies the target contamination component(s) to provide a threshold-based alert signal.5.3 This test method can be used by drinking water treatment plant operators and decision makers as a first line of defense for both initially detecting petroleum product spills, as well as tracking attenuation over time, in source water to prevent contaminant uptake into the processed water and treatment infrastructure.1.1 This test method covers the (1) detection of trace level (µg/L range) of oil and petroleum (water-soluble fraction) pollutants in surface and ground drinking water sources, (2) identification of the compounds, and (3) alerting analysts with a contaminant concentration prediction. This test method facilitates identification and quantification from 20 to 1000 µg/L of target contaminants, including: water-soluble fraction of aromatic compounds from the BTEX family (benzene, toluene, ethylbenzene, and xylenes) and naphthalene from the polycyclic aromatic hydrocarbon (PAH) group, referred to as BTEXN in this test method, in water samples with up to 15 mg/L of dissolved organic carbon (DOC). The main approach involves analyzing and characterizing key water intake locations before the treatment and developing the contaminant library. The water-soluble (BTEXN) contaminants are associated with, but not limited to petroleum oils and fuels including commercial diesel fuel, gasoline, kerosene, heavy oil, fuel oil and lubricate oil, etc.1.2 The data sets are analyzed using multivariate methods to test contaminant identification and quantification. The multivariate methods include classification and regression algorithms to analyze fluorescence EEM data acquired in the laboratory. The common goal of these algorithms is to reduce multidimensionality and eliminate noise of fluorescence and background signals. Automated identification-quantification methods linked directly to the instrument acquisition-analysis software are commercially available.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8431-22
标准名称:
Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis
英文名称:
Standard Test Method for Detection of Water-soluble Petroleum Oils by A-TEEM Optical Spectroscopy and Multivariate Analysis标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- INCITS 22-1983 (S2021) Recorded Magnetic Tape for Information Interchange (800 CPI, NRZI)
- INCITS/ISO/IEC 14496-22:2019 (2019) Information technology -- Coding of audio-visual objects -- Part 22: Open Font Format
- INCITS/ISO/IEC 23000-22:2019/AM1:2021 (2022) Information technology - Multimedia application format (MPEG-A) - Part 22: Multi-image application format (MIAF) - Amendment 1: Reference software and conformance for multi-image application format
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics