
【国外标准】 Standard Guide for Cyclic Deactivation of Fluid Catalytic Cracking (FCC) Catalysts with Metals
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 This guide describes techniques of deactivation that can be used to compare a series of cracking catalysts at equilibrium conditions or to simulate the equilibrium conditions of a specific commercial unit and a specific catalyst.1.1 This guide covers the deactivation of fluid catalytic cracking (FCC) catalyst in the laboratory as a precursor to small scale performance testing such as catalyst activities (Test Method D3907) or activities plus selectivities (Test Methods D5154 and D7964). FCC catalysts are deactivated in the laboratory in order to simulate the aging that occurs during continuous use in a commercial fluid catalytic cracking unit (FCCU). Deactivation for purposes of this guide constitutes hydrothermal deactivation of the catalyst and metal poisoning by nickel and vanadium. Hydrothermal treatment is used to simulate the physical changes that occur in the FCC catalyst through repeated regeneration cycles. Hydrothermal treatment (steaming) destabilizes the faujasite (zeolite Y), resulting in reduced crystallinity and surface area. Further decomposition of the crystalline structure occurs in the presence of vanadium, and to a lesser extent in the presence of nickel. Vanadium is believed to form vanadic acid in a hydrothermal environment resulting in destruction of the zeolitic portion of the catalyst. Nickel’s principle effect is to poison the selectivity of the FCC catalyst. Hydrogen and coke production is increased in the presence of nickel, due to the dehydrogenation activity of the metal. Vanadium also exhibits significant dehydrogenation activity, the degree of which can be influenced by the oxidation and reduction conditions prevailing throughout the deactivation process. The simulation of the metal effects that one would see commercially is part of the objective of deactivating catalysts in the laboratory. Catalyst deactivation by hydrothermal treatment only is addressed in Guide D4463/D4463M.1.2 The two basic approaches to laboratory-scale simulation of commercial equilibrium catalysts described in this guide are as follows:1.2.1 Cyclic Propylene Steaming (CPS) Method, in which the catalyst is impregnated with the desired metals via an incipient wetness procedure (Mitchell method)2 followed by a prescribed steam deactivation.1.2.2 Crack-on Methods, in which fresh catalyst is subjected to a repetitive sequence of cracking (using a feed with enhanced metals concentrations), stripping, and regeneration in the presence of steam. Two specific procedures are presented here, a procedure with alternating metal deposition and deactivation steps and a modified Two-Step procedure, which includes a cyclic deactivation process to target lower vanadium dehydrogenation activity.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D7206/D7206M-19
标准名称:
Standard Guide for Cyclic Deactivation of Fluid Catalytic Cracking (FCC) Catalysts with Metals
英文名称:
Standard Guide for Cyclic Deactivation of Fluid Catalytic Cracking (FCC) Catalysts with Metals标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D7205/D7205M-21 Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars
- 下一篇: ASTM D7207-05 Standard Test Method for Determination of Unvegetated Rolled Erosion Control Product (RECP) Ability to Protect Sand from Hydraulically-Induced Shear Stresses under Bench-Scale Conditions (Withdrawn 2014)
- 推荐标准
- ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil
- ASTM D4614-11(2019) Standard Specification for Ethyl Acetate (All Grades)
- ASTM D4616-23 Standard Test Method for Microscopical Analysis by Reflected Light and Determination of Mesophase in a Pitch
- ASTM D4618-92(2017) Standard Specification for Design and Fabrication of Flue Gas Desulfurization System Components for Protective Lining Application
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products