
【国外标准】 Standard Practice for Preparation of Soil Samples by Ammonium Bifluoride-Nitric Acid Digestion for Subsequent Analysis for Metals and Metalloids
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 There is a need to monitor the content of metals and metalloids in order to determine the presence of potential hazards. Hence, effective and efficient methods are required for the preparation of soil samples for determination of metals and metalloids present therein.5.2 This practice may be used for the digestion of soil samples that are collected during various construction and renovation and hazard survey activities in and around buildings and related structures. The practice is also suitable for the digestion of soil samples for metal and metalloid analyses collected from other locations, such as near roads and steel structures. For some other extraction procedures, see Practices D3974.5.3 This practice is intended to be used to prepare samples that have been collected for hazard assessment purposes but may be used for other applications such as, for example, monitoring the effectiveness of remediation activities.5.4 This practice may be capable of determining metals and metalloids bound within matrices, such as silica, that are not soluble in nitric acid alone.5.5 This practice includes drying and homogenization steps to help assure that reported results are representative of the sample and are independent of potential differences in soil moisture levels among different sampling locations or changing weather conditions.1.1 This practice covers drying, homogenization, and ammonium bifluoride-nitric acid digestion of soil samples and associated quality control (QC) samples for the determination of metals and metalloids using laboratory atomic spectrometry analysis techniques such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES), flame atomic absorption spectrometry (FAAS), and graphite furnace atomic absorption spectrometry (GFAAS). For ammonium bifluoride-nitric acid digestion of airborne dust and dust-wipe samples for the determination of metals and metalloids, see Practice D8344.1.2 This practice is based on U.S. EPA SW 846, Test Method 3050, Test Method D7202, and Practice D8344.1.3 This practice contains notes that are explanatory and are not part of the mandatory requirements of this standard.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8404-21
标准名称:
Standard Practice for Preparation of Soil Samples by Ammonium Bifluoride-Nitric Acid Digestion for Subsequent Analysis for Metals and Metalloids
英文名称:
Standard Practice for Preparation of Soil Samples by Ammonium Bifluoride-Nitric Acid Digestion for Subsequent Analysis for Metals and Metalloids标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D8402-23 Standard Practice for Development of Microplastic Reference Samples for Calibration and Proficiency Evaluation in All Types of Water Matrices with High to Low Levels of Suspended Solids
- 下一篇: ASTM D8405-21 Standard Test Method for Evaluating PM2.5 Sensors or Sensor Systems Used in Indoor Air Applications
- 推荐标准
- ASTM F3258-23 Standard Specification for Protectors for Rubber Insulating Gloves Meeting Specific Performance Requirements
- ASTM F3259-17 Standard Guide for Micro-computed Tomography of Tissue Engineered Scaffolds
- ASTM F3260-18 Standard Test Method for Determining the Flexural Stiffness of Medical Textiles
- ASTM F3262-17 Standard Classification System for Small Unmanned Aircraft Systems (sUASs) for Land Search and Rescue
- ASTM F3265-17(2023) Standard Test Method for Grid-Video Obstacle Measurement
- ASTM F3268-18a Standard Guide for in vitro Degradation Testing of Absorbable Metals
- ASTM F3270/F3270M-17 Standard Practice for Compression versus Load Properties of Gasket Materials
- ASTM F3273-17(2021)e1 Standard Specification for Wrought Molybdenum-47.5 Rhenium Alloy for Surgical Implants (UNS R03700)
- ASTM F3275-22 Standard Guide for Using a Force Tester to Evaluate Performance of a Brush Part Designed to Clean the Internal Channel of a Medical Device
- ASTM F3276-22 Standard Guide for Using a Force Tester to Evaluate the Performance of a Brush Part Designed to Clean the External Surface of a Medical Device
- ASTM F3277-19 Standard Specification for Cantilevered Steel Bunks Used in Detention and Correctional Facilities
- ASTM F3283/F3283M-18 Standard Specification for the Manufacturing of High-Voltage Proximity Alarm to be used for the Detection of Overhead High Voltage Alternating Current (AC)
- ASTM F3288/F3288M-20 Standard Specification for MRS-Rated Metric- and Inch-sized Crosslinked Polyethylene (PEX) Pressure Pipe
- ASTM F3292-19 Standard Practice for Inspection of Spinal Implants Undergoing Testing
- ASTM F3293-18 Standard Guide for Application of Test Soils for the Validation of Cleaning Methods for Reusable Medical Devices