
【国外标准】 Standard Practice for Conventional Pulse-Echo Ultrasonic Testing of Polyethylene Electrofusion Joints
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This practice is intended primarily for the manual ultrasonic scanning of electrofusion joints used in the construction and maintenance of polyethylene piping systems.5.2 Polyethylene piping has been used instead of steel alloys in the petrochemical, power, water, gas distribution, and mining industries due to its reliability and resistance to corrosion and erosion.5.3 This practice is not intended to provide 100 % joint examination. This practice specifies a minimum scanning grid that represents only a portion of the welded interface. As such, there exists a possibility of omitting flaws. In addition, selected areas of the welded interface may not be accessible. The extent of examination shall be specified in the contractual agreement.5.4 The joining process can be subject to a variety of flaws including, but not limited to, lack of fusion, particulate contamination, short-stab depth, inclusions, and voids.5.5 Polyethylene material can have a range of acoustic characteristics that make electrofusion joint examination difficult. Polyethylene materials are highly attenuative, which often limits the use of higher ultrasonic frequencies. It also exhibits a natural high frequency filtering effect. An example of the range of acoustic characteristics is provided in Table 1.6 The table notes the wide range of acoustic velocities reported in the literature. This makes it essential that the reference blocks are made from pipes with the same Specification D3350 density cell classification as the electrofusion fitting examined.(A) A range of velocity and attenuation values have been noted in the literature (1-9).5.6 Polyethylene is reported to have a shear velocity of 987 m/s. However, due to extremely high attenuation in shear mode (on the order of 5 dB/mm [127 dB/inch] at 2 MHz) no practical examinations can be carried out using shear mode (6).5.7 Due to the wide range of applications, joint acceptance criteria for polyethylene pipe are usually project-specific.5.8 A cross-sectional view of typical electrofusion joints between polyethylene pipe and coupling and between pipe and saddle are illustrated in Fig. 1 and Fig. 2, respectively.FIG. 1 Typical Cross-Sectional View of an Electrofusion Coupling JointFIG. 2 Typical Cross-Sectional View of an Electrofusion Saddle Tee Joint1.1 This practice establishes a procedure for ultrasonic testing (UT) of electrofusion joints in polyethylene pipe systems. This practice provides one ultrasonic examination procedure for ultrasonic pulse-echo straight beam contact testing, using straight-beam longitudinal waves introduced by direct contact of the search unit with the material being examined.1.2 The practice is intended to be used on polyethylene electrofusion socket (for example, couplings) and saddle (for example, tees) fittings for use on polyethylene pipe ranging in diameters from nominal 0.5 in. to 12 in. [12 mm to 300 mm] with pipe dimension ratios (DR) ranging from 6.3 to 17. Greater and lesser thicknesses and greater and lesser diameters may be tested using this practice if the technique can be demonstrated to provide adequate detection on mockups of the same wall thickness and geometry.1.3 This practice does not address ultrasonic examination of butt fusions. Ultrasonic testing of polyethylene butt fusion joints is addressed in Practice E3044/E3044M.NOTE 1: The notes in this practice are for information only and shall not be considered part of this practice.NOTE 2: This standard references HDPE and MDPE materials for pipe applications defined by Specification D3350.1.4 This practice does not specify acceptance criteria. Refer to Specification F1055 and Practice F1290 for destructive acceptance criteria.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM E3167/E3167M-18(2023)
标准名称:
Standard Practice for Conventional Pulse-Echo Ultrasonic Testing of Polyethylene Electrofusion Joints
英文名称:
Standard Practice for Conventional Pulse-Echo Ultrasonic Testing of Polyethylene Electrofusion Joints标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM F1697-18 Standard Specification for Poly(Vinyl Chloride) (PVC) Profile Strip for Machine Spiral-Wound Liner Pipe Rehabilitation of Existing Sewers and Conduit
- ASTM F1698-21 Standard Practice for Installation of Poly(Vinyl Chloride)(PVC) Profile Strip Liner and Cementitious Grout for Rehabilitation of Existing Man-Entry Sewers and Conduits
- ASTM F17-20 Standard Terminology Relating to Primary Barrier Packaging
- ASTM F1701-12(2018) Standard Specification for Unused Rope with Special Electrical Properties
- ASTM F1702-10(2018) Standard Test Method for Measuring Impact-Attenuation Characteristics of Natural Playing Surface Systems Using a Lightweight Portable Apparatus
- ASTM F1704-12(2022) Standard Test Method for Capture and Containment Performance of Commercial Kitchen Exhaust Ventilation Systems
- ASTM F1705-96(2020) Standard Guide for Training Emergency Medical Services Ambulance Operations
- ASTM F1713-08(2021)e1 Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130)
- ASTM F1714-96(2018) Standard Guide for Gravimetric Wear Assessment of Prosthetic Hip Designs in Simulator Devices
- ASTM F1716-96(2022) Standard Guide for Transition and Performance of Marine Software Systems Maintenance
- ASTM F1717-21 Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model
- ASTM F1728-96(2020) Standard Practice for Multiple Persons Cold Water Survival/Rescue Technique: Huddle Position
- ASTM F1732-12(2018) Standard Specification for Poly(Vinyl Chloride) (PVC) Sewer and Drain Pipe Containing Recycled PVC Material
- ASTM F1733-24 Standard Specification for Butt Heat Fusion Polyamide(PA) Plastic Fitting for Polyamide(PA) Plastic Pipe and Tubing
- ASTM F1734-19 Standard Practice for Qualification of a Combination of Squeeze Tool, Pipe, and Squeeze-Off Procedures to Avoid Long-Term Damage in Polyethylene (PE) Gas Pipe