
【国外标准】 Standard Practice for Making and Using Precracked Double Beam Stress Corrosion Specimens
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Precracked specimens offer the opportunity to use the principles of linear elastic fracture mechanics (1)4 to evaluate resistance to stress corrosion cracking in the presence of a pre-existing crack. This type of evaluation is not included in conventional bent beam, C-ring, U-bend, and tension specimens. The precracked double beam specimen is particularly useful for evaluation of materials that display a strong dependence on grain orientation. Since the specimen dimension in the direction of applied stress is small for the precracked double beam specimen, it can be successfully used to evaluate short transverse stress corrosion cracking of wrought products, such as rolled plate or extrusions. The research applications and analysis of precracked specimens in general, and the precracked double beam specimen in particular, are discussed in Appendix X1.5.2 The precracked double beam specimen may be stressed in either constant displacement or constant load. Constant displacement specimens stressed by loading bolts or wedges are compact and self-contained. By comparison, constant load specimens stressed with springs (for example, proof rings, discussed in Test Method G49, 7.2.1.2) or by deadweight loading require additional fixtures that remain with the specimen during exposure.5.3 The recommendations of this practice are based on the results of interlaboratory programs to evaluate precracked specimen test procedures (2, 3) as well as considerable industrial experience with the precracked double beam specimen and other precracked specimen geometries (4-8).1.1 This practice covers procedures for fabricating, preparing, and using precracked double beam stress corrosion test specimens. This specimen configuration was formerly designated the double cantilever beam (DCB) specimen. Guidelines are given for methods of exposure and inspection.1.2 The precracked double beam specimen, as described in this practice, is applicable for evaluation of a wide variety of metals exposed to corrosive environments. It is particularly suited to evaluation of products having a highly directional grain structure, such as rolled plate, forgings, and extrusions, when stressed in the short transverse direction.1.3 The precracked double beam specimen may be stressed in constant displacement by bolt or wedge loading or in constant load by use of proof rings or dead weight loading. The precracked double beam specimen is amenable to exposure to aqueous or other liquid solutions by specimen immersion or by periodic dropwise addition of solution to the crack tip, or exposure to the atmosphere.1.4 This practice is concerned only with precracked double beam specimen and not with the detailed environmental aspects of stress corrosion testing, which are covered in Practices G35, G36, G37, G41, G44, and G50.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM G168-17
标准名称:
Standard Practice for Making and Using Precracked Double Beam Stress Corrosion Specimens
英文名称:
Standard Practice for Making and Using Precracked Double Beam Stress Corrosion Specimens标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM D4619-12(2018) Standard Practice for Inspection of Linings in Operating Flue Gas Desulfurization Systems
- ASTM D4623-16 Standard Test Method for Determination of In Situ Stress in Rock Mass by Overcoring Method—Three Component Borehole Deformation Gauge
- ASTM D4625-21 Standard Test Method for Middle Distillate Fuel Storage Stability at 43 °C (110 °F)
- ASTM D4626-23 Standard Practice for Calculation of Gas Chromatographic Response Factors
- ASTM D4630-19 Standard Test Method for Determining Transmissivity and Storage Coefficient of Low-Permeability Rocks by In Situ Measurements Using the Constant Head Injection Test
- ASTM D4631-18 Standard Test Method for Determining Transmissivity and Storativity of Low Permeability Rocks by In Situ Measurements Using Pressure Pulse Technique
- ASTM D4634-16(2022) Standard Classification System and Basis for Specification for Styrene-Maleic Anhydride Molding and Extrusion Materials (S/MA)
- ASTM D4636-17 Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils
- ASTM D4637/D4637M-15(2021)e1 Standard Specification for EPDM Sheet Used in Single-Ply Roof Membrane
- ASTM D4638-16(2023) Standard Guide for Preparation of Biological Samples for Inorganic Chemical Analysis
- ASTM D464-15(2020) Standard Test Methods for Saponification Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4647/D4647M-13(2020) Standard Test Methods for Identification and Classification of Dispersive Clay Soils by the Pinhole Test
- ASTM D465-15(2020) Standard Test Methods for Acid Number of Pine Chemical Products Including Tall Oil and Other Related Products
- ASTM D4651-14(2020) Standard Specification for Isobutane Thermophysical Property Tables
- ASTM D4653-87(2020) Standard Test Method for Total Chlorides in Leather