
【国外标准】 Standard Practice for Sealing of Sewers Using Chemical Grouting
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 The inspection, testing, and repair of sewer pipe joints is a practice that can assist in maintaining and optimizing sewer performance. It is important to identify methods that use the most current compounds and technology to ensure the reduction of infiltration and exfiltration. The method selected should utilize environmentally safe grout and minimize the disruption of traffic.4.2 This practice serves as a means to inspect, test, and seal sewer pipe joints, having selected the appropriate chemical grouts, using the packer method. Television inspection and joint testing are used to identify sewer line conditions, defective joints, and document the repairs undertaken. Instruction on joint sealing, if necessary, is then detailed, using pressure injection into the soils encompassing the pipe joint with a chemical grout (chemical sealing material).4.3 This practice should not be used for longitudinally cracked pipe, severely corroded pipe, structurally unsound pipe, flattened, or out-of-roundpipe. In areas with high groundwater pressure, greater than 10 psi (68.9 ksi) at the test point, consult equipment manufacturers.1.1 This practice describes the procedures for testing and sealing individual sewer pipe joints with appropriate chemical grouts using the packer method. Sewer systems shall include sanitary, storm, and combined and their appurtenances. Chemical grouting is a soil sealing process, which seals the voids within the soil surrounding the exterior of the pipe at the point of leakage. Chemical grouting is not considered a structural repair.1.2 This practice applies to sewers 6 in. to 42 in. (18 cm to 107 cm) in diameter. Larger diameter pipe may be grouted with specialized packers or man entry methods. Host pipe interior surfaces must be adequate to create an effective seal for the packer elements.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 Worker safety training should include reviewing the hazards associated with hoses, pumps, tanks, couplers, compressors, bottles, motors, and all other related application apparatus. Additional safety considerations including safely handling, mixing, and transporting of chemical grouts should be provided by the chemical grout manufacturer or supplier or both. Their safe operating practices and procedures should describe in detail appropriate personal protective equipment (PPE) for the various grouting operations. Operations covered should include the proper storage, transportation, mixing, and disposal of chemical grouts, additives, and their associated containers.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2304-22
标准名称:
Standard Practice for Sealing of Sewers Using Chemical Grouting
英文名称:
Standard Practice for Sealing of Sewers Using Chemical Grouting标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM F2303-03(2021) Standard Practice for Selection of Gravity Sewers Suitable for Installation of Optical Fiber Cable and Conduits
- 下一篇: ASTM F2306/F2306M-21 Standard Specification for 300 mm to 1500 mm [12 in. to 60 in.] Annular Corrugated Profile-Wall Polyethylene (PE) Pipe and Fittings for Non-Pressure Gravity-Flow Storm Sewer and Subsurface Drainage Applications
- 推荐标准
- INCITS 22-1983 (S2021) Recorded Magnetic Tape for Information Interchange (800 CPI, NRZI)
- INCITS/ISO/IEC 14496-22:2019 (2019) Information technology -- Coding of audio-visual objects -- Part 22: Open Font Format
- INCITS/ISO/IEC 23000-22:2019/AM1:2021 (2022) Information technology - Multimedia application format (MPEG-A) - Part 22: Multi-image application format (MIAF) - Amendment 1: Reference software and conformance for multi-image application format
- ASTM D8137-18(2023) Practice for Accelerated Aging of Leather
- ASTM D8138-23 Standard Specification for Preformed Silicone Joint Sealing System for Bridges
- ASTM D8139-23 Standard Specification for Semi-Rigid, Closed-Cell Polypropylene Foam, Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction
- ASTM D814-95(2020) Standard Test Method for Rubber Property—Vapor Transmission of Volatile Liquids
- ASTM D8140-18(2023) Standard Guide for the Use of Foundry Sand in Asphalt Mixtures
- ASTM D8141-22 Standard Guide for Selecting Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs) Emission Testing Methods to Determine Emission Parameters for Modeling of Indoor Environments
- ASTM D8144-22 Standard Test Method for Separation and Determination of Aromatics, Nonaromatics, and FAME Fractions in Middle Distillates by Solid-Phase Extraction and Gas Chromatography
- ASTM D8148-22 Standard Test Method for Spectroscopic Determination of Haze in Fuels
- ASTM D8149-20 Standard Practice for Optimization, Calibration, and Validation of Ion Chromatographic Determination of Heteroatoms and Anions in Petroleum Products and Lubricants
- ASTM D8150-22 Standard Test Method for Determination of Organic Chloride Content in Crude Oil by Distillation Followed by Detection Using Combustion Ion Chromatography
- ASTM D8152-18 Standard Practice for Measuring Field Infiltration Rate and Calculating Field Hydraulic Conductivity Using the Modified Philip Dunne Infiltrometer Test
- ASTM D8154-24 Standard Test Methods for 1H-NMR Determination of Ketone-Ethylene-Ester and Polyvinyl Chloride Contents in KEE-PVC Roofing Fabrics