
【国外标准】 Standard Practices for Dissolving Glass Containing Radioactive and Mixed Waste for Chemical and Radiochemical Analysis
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
AbstractThese practices cover three standard technique for dissolving glass samples containing radioactive, nuclear, and mixed wastes. These techniques used together or independently will produce solutions that can be analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), radiochemical methods and wet chemical techniques for major components, minor components and radionuclides. The practices for dissolving silicate matrix samples each require the sample to be initially dried and ground to a fine powder. The first practice involves the mixing and fusion of the sample with sodium tetraborate (Na2B4O7) and sodium carbonate (Na2CO4) in a muffle for a given amount of time and temperature. The sample is then cooled, dissolved in hydrochloric acid, and diluted to appropriate volume for analyses. The second practice, on the other hand, involves the fusion of the sample with potassium hydroxide (KOH) or sodium peroxide (Na2O2) using an electric bunsen burner, dissolving the fused sample in water and dilute HCl, and making to volume for analyses. Finally, the third practice involves the dissolution of the sample using a microwave oven. The ground sample is digested in a microwave oven using a mixture of hydrofluoric (HF) and nitric (HNO3) acids. Boric acid is added to the resulting solution to complex excess fluoride ions.1.1 These practices cover techniques suitable for dissolving glass samples that may contain nuclear wastes. These techniques used together or independently will produce solutions that can be analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), radiochemical methods and wet chemical techniques for major components, minor components and radionuclides.1.2 One of the fusion practices and the microwave practice can be used in hot cells and shielded hoods after modification to meet local operational requirements.1.3 The user of these practices must follow radiation protection guidelines in place for their specific laboratories.1.4 Additional information relating to safety is included in the text.1.5 The dissolution techniques described in these practices can be used for quality control of the feed materials and the product of plants vitrifying nuclear waste materials in glass.1.6 These practices are introduced to provide the user with an alternative means to Test Methods C169 for dissolution of waste containing glass in shielded facilities. Test Methods C169 is not practical for use in such facilities and with radioactive materials.1.7 The ICP-AES methods in Test Methods C1109 and C1111 can be used to analyze the dissolved sample with additional sample preparation as necessary and with matrix effect considerations. Additional information as to other analytical methods can be found in Test Method C169.1.8 Solutions from this practice may be suitable for analysis using ICP-MS after establishing laboratory performance criteria and verification that the criteria can be met. For example, Test Methods C1287 or C1637 may be used with additional sample preparation as necessary and appropriate matrix effect considerations.1.9 The values stated in SI units are to be regarded as standard. Units in parentheses are for information only.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Sections 10, 20, and 30.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM C1463-19
标准名称:
Standard Practices for Dissolving Glass Containing Radioactive and Mixed Waste for Chemical and Radiochemical Analysis
英文名称:
Standard Practices for Dissolving Glass Containing Radioactive and Mixed Waste for Chemical and Radiochemical Analysis标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium