
【国外标准】 Standard Specifications and Test Methods for Components Used in the Surgical Fixation of the Spinal Skeletal System
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 Spinal implant constructs are typically a compilation of several components. Screws, plates, and rods are integral components of many spinal implant constructs. These components are designed to transfer load between the bone and the longitudinal or transverse element, or both. These specifications and test methods identify specifications for such components and define standard equivalent test methods that can be used when evaluating different related component designs.4.2 Since the loading of spinal components in-vivo may differ from the loading configurations addressed in these specifications and test methods, the results obtained from this document may not predict in-vivo performance of either the components or the construct as a whole. Such tests can, however, be used to compare different component designs in terms of relevant mechanical performance characteristics.4.3 The performance-related mechanical characteristics determined by these specifications and test methods will supply the user with information that may be used to predict the mechanical performance of different design variations of similar (function and indication) spinal construct components.AbstractThese specifications and test methods provide standard specifications that specify material, labeling, and handling requirements for components used in surgical fixation of the spinal skeletal system such as metallic spinal screws, spinal plates, and spinal rods. The specifications and test methods establish (1) common terminology that can be used to describe the size and other physical characteristics of spinal components and performance definitions related to the performance of spinal components, and (2) performance requirements and standard test methods to consistently measure performance-related mechanical characteristics of spinal components. It is not the intention of these specifications and test methods to define levels of performance or case-specific clinical performance for spinal components and to describe or specify specific designs for the individual components. For these specifications and test methods may not be appropriate for all types of spinal surgical fixation systems, the appropriateness of these specifications in view of the particular implant system and its potential application shall be considered. The test methods include static and fatigue bending strength tests. Requirements for marking and packaging are specified as well.1.1 These specifications and test methods are intended to provide a comprehensive reference for the components of systems used in the surgical fixation of the spinal skeletal system. The document catalogs standard specifications that specify material, labeling, and handling requirements. The specifications and test methods also establish common terminology that can be used to describe the size and other physical characteristics of spinal components and performance definitions related to the performance of spinal components. Additionally, the specifications and test methods establish performance requirements and standard test methods to consistently measure performance-related mechanical characteristics of spinal components.1.2 These specifications and test methods are part of a series of standards addressing systems used in the surgical fixation of the spinal skeletal system. These specifications and test methods concentrate on the individual components, which are found in many spinal fixation systems. If the user is interested in evaluating the next level in the spinal fixation system chain, the interconnections between individual components and subassemblies (two or more components), the user should consult Guide F1798. At the highest level in this chain is Test Methods F1717, which is used to evaluate an entire construct assembled from many components and involves numerous interconnections and several subassemblies.1.3 It is not the intention of these specifications and test methods to define levels of performance or case-specific clinical performance for spinal components addressed by this document. Insufficient knowledge to predict the consequences of using any of these components in individual patients for specific activities of daily living is available. Furthermore, it is not the intention of this document to describe or specify specific designs for the individual components of systems used in the surgical internal fixation of the spinal skeletal system.1.4 These specifications and test methods may not be appropriate for all types of spinal surgical fixation systems. The user is cautioned to consider the appropriateness of this document in view of the particular implant system and its potential application.1.5 This document includes the following specifications and test methods that are used in determining the spinal component's mechanical performance characteristics:1.5.1 Specification for Metallic Spinal Screws—Annex A1.1.5.2 Specification for Metallic Spinal Plates—Annex A2.1.5.3 Specification for Metallic Spinal Rods—Annex A3.1.5.4 Test Method for Measuring the Static and Fatigue Bending Strength of Metallic Spinal Screws—Annex A4.1.6 Unless otherwise indicated, the values stated in SI units shall be regarded as the standard.1.7 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2193-20
标准名称:
Standard Specifications and Test Methods for Components Used in the Surgical Fixation of the Spinal Skeletal System
英文名称:
Standard Specifications and Test Methods for Components Used in the Surgical Fixation of the Spinal Skeletal System标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 2341.20:1998 Methods of testing bitumen and related roadmarking products Determination of sieve residue for bituminous materials
- AS/NZS 4266.20:1996 Reconstituted wood-based panels - Methods of test Determination of resistance to surface abrasion (Taber abrasion test)
- AS/NZS 4276.20:2003 (R2013) Water microbiology Examination for coagulase positive staphylococci, including Staphylococcus aureus, by membrane filtration
- AS/NZS 60079.20.1:2012 Explosive atmospheres Material characteristics for gas and vapour classification - Test methods and data
- AS/NZS 60695.11.20:2001/Amdt 1:2004 Fire hazard testing Test flames - 500 W flame test methods
- AS/NZS 60745.2.20:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for band saws
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium