
【国外标准】 Standard Practice for Development and Use of Oil-Spill Trajectory Models
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
3.1 Trajectory models are used to predict the future movement and fate of oil (forecast mode) in contingency planning, in exercises and during real spill events. This information is used for planning purposes to position equipment and response personnel in order to optimize a spill response. Oil-spill trajectory models are used in the development of scenarios for training and exercises. The use of models allows the scenario designer to develop incidents and situations in a realistic manner.3.2 Oil-spill trajectory models can be used in a statistical manner (stochastic mode) to identify the areas that may be impacted by oil spills.3.3 In those cases where the degree of risk at various locations from an unknown source is needed, trajectory models can be used in an inverse mode to identify the sources of the pollution (hindcast mode).3.4 Models can also be used to examine habitats, shorelines, or areas to predict if they would be hit with oil from a given source (receptor mode).1.1 This practice describes the features and processes that should be included in an oil-spill trajectory and fate model.1.2 This practice applies only to oil-spill models and does not consider the broader need for models in other fields. This practice considers only computer-based models, and not physical modeling of oil-spill processes.1.3 This practice is applicable to all types of oil in oceans, lakes, and rivers under a variety of environmental and geographical conditions.1.4 This practice applies primarily to two-dimensional models. Consideration is given to three-dimensional models for complex flow regimes.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM F2067-22
标准名称:
Standard Practice for Development and Use of Oil-Spill Trajectory Models
英文名称:
Standard Practice for Development and Use of Oil-Spill Trajectory Models标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- AS/NZS 1462.22:1997 Methods of test for plastics pipes and fittings Method for the determination of pipe stiffness
- AS/NZS 2341.22:1996 (R2013) Methods of testing bitumen and related roadmaking products Determination of particle charge
- AS/NZS 4266.22:1996 Reconstituted wood-based panels - Methods of test Determination of porosity of laminated surface
- AS/NZS 60745.2.22:2011/Amdt 1:2012 Hand-held motor-operated electric tools Safety - Particular requirements for cut-off machines (IEC 60745-2-22 Ed 1, MOD)
- AS/NZS CISPR 22:2004 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement
- AS/NZS IEC 60670.22:2012 Boxes and enclosures for electrical accessories for household and similar fixed electrical installations Particular requirements for connecting boxes and enclosures
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium