
【国外标准】 Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 This test method has been widely used to obtain mass balance data for process scrubbers, to determine the efficiency of VOC emission control equipment, and to obtain data to support air permit applications.5.2 This test method will have applications to the Maximum Achievable Control Technology (MACT) Rule and may have applications to Compliance Assurance Monitoring verification required by the 1990 Clean Air Act Title III Amendments.5.3 This test method, when used with Test Methods D3464 or D3154 or on-line process flow meter data, can be used to calculate detailed emission rate profiles for VOCs from process vents.5.4 This test method provides nearly real time results that can detect process changes or upsets that may be missed using conventional sorbent tube or integrated gas sampling bag sampling.1.1 This test method describes a method for direct sampling and analysis of process vents for volatile organic compound (VOC) vapors and permanent gases using a portable gas chromatograph (GC).1.2 This test method is applicable to analysis of permanent gases such as oxygen (O2), carbon dioxide (CO2) and nitrogen (N2), as well as vapors from organic compounds with boiling points up to 125°C.1.3 The detection limits obtained will depend on the portable gas chromatograph and detector used. Detectors available include but are not limited to thermal conductivity, photoionization, argon ionization, and electron capture. For instruments equipped with thermal conductivity detectors, typical detection limits are one to two parts per million by volume (ppm(v)) with an applicable concentration range to high percent by volume levels. For instruments with photoionization detectors detection limit of one to ten parts per billion by volume (ppb(v)) are obtainable with a concentration range from 1000 to 2000 ppm(v). The argon ionization detector has an achievable detection limit of one (ppb(v)), while the electron capture detector has an achievable detection limit of one part per trillion by volume (ppt(v)) for chlorinated compounds.1.4 The applicability of this test method should be evaluated for each VOC by determining stability, reproducibility, and linearity.1.5 The appropriate concentration range must also be determined for each VOC, as the range will depend on the vapor pressure of the particular VOC.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 8 on Hazards for additional safety precautions.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D6060-17
标准名称:
Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph
英文名称:
Standard Test Method for Sampling of Process Vents with a Portable Gas Chromatograph标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D6059-96(2011) Standard Test Method for Determining Concentration of Airborne Single-Crystal Ceramic Whiskers in the Workplace Environment by Scanning Electron Microscopy (Withdrawn 2020)
- 下一篇: ASTM D6061-01(2018)e1 Standard Practice for Evaluating the Performance of Respirable Aerosol Samplers
- 推荐标准
- AS/NZS 3200.2.17:1994/Amdt 1:1997 Approval and test specification - Medical electrical equipment - Particular requirements for safety - Remote-controlled automatically-driven gamma-ray afterloading equipment
- AS/NZS 3350.2.17:2000/Amdt 1:2001 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating
- AS/NZS 3350.2.17:2000/Amdt 3:2007 Safety of household and similar electrical appliances Particular requirements - Blankets, pads and similar flexible heating appliances (IEC 60335-2-17:1998, MOD)
- AS/NZS 4456.17:2003/Amdt 1:2004 Masonry units, segmental pavers and flags - Methods of test Determining initial rate of absorption (suction)
- AS/NZS 60079.17:2009/Amdt 1:2011 Explosive atmospheres Electrical installations inspection and maintenance
- AS/NZS 60335.2.17:2004/Amdt 2:2009 Household and similar electrical appliances - Safety Particular requirements for blankets, pads, clothing and similar flexible heating appliances (IEC 60335-2-17 Ed 2.2, MOD)
- AS/NZS 60598.2.17:2006 Luminaires Particular requirements - Luminaires for stage lighting, television, film and photographic studios (outdoor and indoor)(IEC 60598.2.17, Ed. 1.0 (1984) MOD)
- AS/NZS 60745.2.17:2003 Hand-held motor-operated electric tools - Safety - Particular requirements for routers and trimmers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members