
【国外标准】 Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
4.1 ZSM-5 is a siliceous zeolite that can be crystallized with SiO2/Al2O3 ratio in the range of 20 to greater than 1000. ZSM-5, upon modification to the H-cation form (HZSM-5) in a post-crystallization step, has been used since the 1970s as a shape selective, acid-site catalyst for petroleum refining and petrochemicals production, including such processes as alkylation, isomerization, fluid cracking catalysis (FCC), and methanol-to-gasoline. The most siliceous member of the ZSM-5 family, sometimes called silicalite, is hydrophobic and it is used for selective sorption of organic molecules from water-containing systems.4.2 This X-ray procedure is designed to allow a reporting of the relative degree of crystallization upon manufacture of ZSM-5. The relative crystallinity/ZSM-5 number has proven useful in technology, research, and specifications.4.3 The Integrated Peak Area Method (Procedure A) is preferred over the Peak Height Method (Procedure B) since it calculates XRD intensity as a sum from several peaks rather than utilizing just one peak. Drastic changes in intensity of individual peaks in the XRD pattern of ZSM-5 can result from changes in distribution of electron density within the unit cell of the ZSM-5 zeolite. The electron density distribution is dependent upon the following factors:4.3.1 Extent of filling of pores with guest molecules and the nature of these guest molecules.4.3.2 Type of cations and extent of their presence (these cations may also affect the absorption of X rays by the ZSM-5 sample).4.3.3 In this XRD method, the guest molecule H2O completes the filling of the pores. Other guest molecule types may also be present, including one of numerous amines, diamines, and quarternary ammonium cations that can function as a template for crystallization of the ZSM-5 structure.4.3.4 Because of the factors mentioned in 4.3.1 to 4.3.3 that could vary the intensities of the XRD peaks in ZSM-5, this XRD method will provide the best determination of relative crystallinity when the reference ZSM-5 and sample ZSM-5 have a similar history of preparation and composition.4.4 ZSM-5 can exist with either orthorhombic or monoclinic symmetry, depending upon the composition of the precursor gel or post-crystallization modification conditions, or both. In the orthorhombic type, the XRD peaks centered at about 23.1 and 23.8° 2θ are usually split into doublets, whereas the less symmetric monoclinic type may show a further split of these peaks into triplets. The peak area intensities of these peaks are unaffected by the crystalline form. The XRD peak at 24.3° 2θ for the orthorhombic form is a singlet and hence is the most suitable for the Peak Height Method (Procedure B). If the 24.3° peak is split (doublet in the monoclinic form), then the Integrated Peak Area Method (Procedure A) should be used.4.5 If crystalline phases other than ZSM-5 are present in the sample, their diffraction peaks may overlap with some of the ZSM-5 peaks selected for the Integrated Peak Area Method (Procedure A). If there is reason to suspect the presence of such components, then the Peak Height Method (Procedure B) should be chosen for analysis provided that there is no interference with the 24.3° 2θ peak that is used for the calculation.1.1 This test method covers a procedure for determination of the relative crystallinity of zeolite ZSM-5 using selected peaks from the X-ray diffraction pattern of the zeolite.1.2 The test method provides a number that is the ratio of intensity of a portion of the XRD pattern of the sample ZSM-5 to intensity of the corresponding portion of the pattern of a reference ZSM-5. The intensity ratio, expressed as a percentage, is then labeled percent XRD relative crystallinity/ZSM-5. This type of comparison is commonly used in zeolite technology and is often referred to as percent crystallinity.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D5758-01(2021)
标准名称:
Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction
英文名称:
Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 推荐标准
- ASTM B1-13(2018) Standard Specification for Hard-Drawn Copper Wire
- ASTM B100-20 Standard Specification for Wrought Copper-Alloy Bearing and Expansion Plates and Sheets for Bridge and Other Structural Use
- ASTM B1002-16(2020) Standard Specification for Refined Indium
- ASTM B1003-16(2023) Standard Specification for Seamless Copper Tube for Linesets
- ASTM B1004-16(2022) Standard Practice for Contact Performance Classification of Electrical Connection Systems
- ASTM B1005-17(2023) Standard Specification for Copper-Clad Aluminum Bar for Electrical Purposes (Bus Bar)
- ASTM B1008-18 Standard Test Method for Stress-Strain Testing for Overhead Electrical Conductors
- ASTM B1010/B1010M-19 Standard Specification for Copper-Clad Steel Electrical Conductor for Tracer Wire Applications
- ASTM B1011/B1011M-22 Standard Specification for Cobalt Alloy Spring Wire
- ASTM B1013-22 Standard Specification for High Fluidity (HF) Zinc-Aluminum Alloy Thin Wall Die Castings
- ASTM B1014-20 Standard Specification for Welded Copper and Copper Alloy Condenser and Heat Exchanger Tubes with a Textured Surface(s)
- ASTM B1019-21 Standard Test Method for Determination of Surface Oxides on Copper Rod(for Electrical Purposes)
- ASTM B1020/B1020M-22 Standard Specification for Seamless Nickel Alloy Mechanical Tubing and Hollow Bar
- ASTM B1021-21 Standard Test Method for Peel Resistance of Metal Sheets Joined by High Strength Bonds
- ASTM B1022-22 Standard Specification for Zinc-Aluminum-Magnesium Alloys in Ingot Form for Coating Steel Sheet by the Hot-Dip Process