
【国外标准】 Standard Test Method for Consolidated Undrained Cyclic Direct Simple Shear Test under Constant Volume with Load Control or Displacement Control
本网站 发布时间:
2024-02-28
开通会员免费在线看70000余条国内标准,赠送文本下载次数,单本最低仅合13.3元!还可享标准出版进度查询、定制跟踪推送、标准查新等超多特权!  
查看详情>>

适用范围:
5.1 Cyclic direct simple shear strength test results are used most often for evaluating the ability of a soil to resist shear stresses induced in a soil mass during earthquake loading, offshore storm loading, etc.5.2 In this test, the cyclic strength is measured under constant volume conditions that are equivalent to undrained conditions; hence, the test is applicable to field conditions in which the soils have consolidated under one set of stresses, and then are subjected to changes in stress/strain without time for further drainage to take place.5.3 The cyclic strength is a function of many factors including density, confining pressure, stress history, grain structure, specimen preparation procedure, frequency, and characteristics of the cyclic loading applied. Therefore, test factors shall be considered during evaluation of test results.5.4 The state of stress within the direct simple shear specimen is not sufficiently defined nor uniform enough to allow rigorous interpretation of the results. Expressing the data in terms of the shear stress and vertical effective stress on the horizontal plane is useful for engineering purposes. Some effective stress parameters that could be derived from a cyclic direct simple shear test shall not be confused with corresponding parameters derived from other shear tests having better defined states of stress (that is, cyclic triaxial tests).5.5 The values of settlement in saturated soil after cyclic loading can be assessed from the test results by allowing volume change at the end of the shearing to achieve same vertical effective stresses as at end of primary consolidation.5.6 The data from the consolidation portion of this test are comparable to results obtained using Test Method D2435/D2435M provided that the more rigorous consolidation procedure of Test Method D2435/D2435M is followed.1.1 This test method defines equipment specifications and testing procedures for the measurement of cyclic strength, number of cycles to liquefaction or cyclic properties (Modulus and Damping) of soils, after one-dimensional consolidation using a cyclic mode of loading.1.2 The cyclic shearing can be applied using load control or displacement control. It shall be the responsibility of the agency requesting this test to specify the magnitude and frequency of the cyclic loading. Other loading histories may be used if required by the agency requesting the testing.1.3 This test method is written specifically for devices that test cylindrical specimens enclosed in a wire-reinforced membrane or a soft membrane within a stack of rigid rings (this test method applies to Teflon coated rigid rings as well). Other types of shear devices are beyond the scope of this test method.1.4 This test method can be used for testing cohesionless free draining soils or fine grained soils. However, this test method may be followed when testing most soil types if care is taken to ensure that any special considerations required for such soils are accounted for.1.5 The shearing phase of this test is conducted under constant volume conditions. Since the lateral confinement system prevents radial specimen strains, the constant volume condition is accomplished by preventing specimen height change during shear. Shearing under constant volume can be performed on dry or saturated specimens. The constant volume condition is equivalent to the undrained condition for fully saturated specimens. Cyclic direct simple shear testing with truly undrained conditions (restricting pore water flow from and into the specimen) can be performed using some simple shear devices, but is beyond the scope of this standard.21.6 The cyclic strength of a soil is determined based on the number of cycles required to reach a limiting double amplitude shear strain or a single amplitude shear strain, while liquefaction is more commonly defined as 100 % change in vertical stress ratio (change in effective vertical stress during shearing divided by effective vertical stress at end of primary consolidation). The change in vertical stress ratio in constant volume shearing is equivalent to the excess pore pressure ratio (excess pore pressure during shearing divided by effective vertical stress at end of primary consolidation) under undrained conditions. The strain criterion is only applicable when performing load controlled tests; 100 % change in vertical stress ratio can be used for both, load and displacement control. For displacement control testing, the criterion to stop the test could be a specified number of cycles.1.7 This test method is applicable to testing intact, reconstituted, or compacted specimens; however, it does not include specific guidance for preparing, reconstituting or compacting test specimens.1.8 It shall be the responsibility of the agency requesting this test to specify the magnitude of the consolidation stress prior to shear and, if assigned, an unloading consolidation stage may be required for over-consolidating the specimen.1.9 All recorded and calculated values shall conform to the guide for significant digits and rounding established in Practice D6026.1.9.1 The procedures used to specify how data are collected/recorded and calculated in this test method are regarded as the industry standard. In addition, they are representative of the significant digits that shall generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this test method to consider significant digits used in analysis methods for engineering design.1.9.2 Measurements made to more significant digits or better sensitivity than specified in this standard shall not be regarded as nonconformance with this standard.1.10 Units—The values stated in SI units are to be regarded as the standard. Reporting test results in units other than SI shall be regarded as conformance with this test method. In the engineering profession it is customary practice to use, interchangeably, units representing both mass and force, unless dynamic calculations (F=Ma) are involved. This implicitly combines two separate systems of units, that is, the absolute system and the gravimetric system. It is scientifically undesirable to combine two separate systems within a single standard. This test method has been written using SI units; however, inch-pound conversions are given in the gravimetric system, where the pound (lbf) represents a unit of force (weight). The use of balances or scales recording pounds of mass (lbm), or the recording of density in lb/ft3 shall not be regarded as nonconformance with this test method.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
标准号:
ASTM D8296-19
标准名称:
Standard Test Method for Consolidated Undrained Cyclic Direct Simple Shear Test under Constant Volume with Load Control or Displacement Control
英文名称:
Standard Test Method for Consolidated Undrained Cyclic Direct Simple Shear Test under Constant Volume with Load Control or Displacement Control标准状态:
Active-
发布日期:
-
实施日期:
出版语种:
- 其它标准
- 上一篇: ASTM D8295-19 Standard Test Method for Determination of Shear Wave Velocity and Initial Shear Modulus in Soil Specimens using Bender Elements
- 下一篇: ASTM D8297/D8297M-23 Standard Test Method for Determination of Erosion Control Products (ECP) Performance in Protecting Slopes from Sequential Rainfall-Induced Erosion Using a Tilted Bed Slope
- 推荐标准
- AS/NZS 60745.2.19:2011 Hand-held motor-operated electric tools - Safety Particular requirements for jointers
- ASTM 51026-23 Standard Practice for Using the Fricke Dosimetry System
- ASTM 52303-24 Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities
- ASTM A1-00(2018) Standard Specification for Carbon Steel Tee Rails
- ASTM A1000/A1000M-17(2023) Standard Specification for Steel Wire, Carbon and Alloy Specialty Spring Quality
- ASTM A1001-18 Standard Specification for High-Strength Steel Castings in Heavy Sections
- ASTM A1002-16(2020) Standard Specification for Castings, Nickel-Aluminum Ordered Alloy
- ASTM A1004/A1004M-99(2018) Standard Practice for Establishing Conformance to the Minimum Expected Corrosion Characteristics of Metallic, Painted-Metallic, and Nonmetallic-Coated Steel Sheet Intended for Use as Cold Formed Framing Members
- ASTM A1009-18 Standard Specification for Soft Magnetic MnZn Ferrite Core Materials for Transformer and Inductor Applications
- ASTM A101-04(2019) Standard Specification for Ferrochromium
- ASTM A1010/A1010M-13(2018) Standard Specification for Higher-Strength Martensitic Stainless Steel Plate, Sheet, and Strip
- ASTM A1012-10(2021) Standard Specification for Seamless and Welded Ferritic, Austenitic and Duplex Alloy Steel Condenser and Heat Exchanger Tubes With Integral Fins
- ASTM A1015-01(2018) Standard Guide for Videoborescoping of Tubular Products for Sanitary Applications
- ASTM A1016/A1016M-23 Standard Specification for General Requirements for Ferritic Alloy Steel, Austenitic Alloy Steel, and Stainless Steel Tubes
- ASTM A102-04(2019) Standard Specification for Ferrovanadium